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Dominant Features of the AMV and Its Climate Impacts
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AMV

Monthly Atlantic Multidecadal Variability Index from

1856—-2017

Data Source: NOAA Earth System Research Lab based on Kaplan SST
(https://www.esrl.noaa.gov/psd/data/timeseries/AMO/)

Monthly Values for the AMV Index, 1856/01-2017/07
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To what extentis 20™ Century North Atlantic multidecadal
variability externally forced?

ERSST, 1854 - 2012
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tree ring PDSI ave. west of 90W

Regression coefficients: PDSI onto

Palmer Drought Severity Index (PDSI) radiatively forced SST (top), AMV index
Versus AMV (middle), and negative NINO3.4 index
(bottom)
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PDSI data from (Cook et al., 2004) North

American Drought Atlas based on tree ring T Tawese

» Forced warming, positive AMV and La Niha
all contribute to drought conditions in the
U.S., but the impact of AMV tend to be more
significant and wide spread.




Internal Decadal vs. Forced Variability

Internal Variance Ratio for Ts: Decadal/Total
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The North Atlantic,
North Pacific, and the
Southern Oceans are
regions of high internal
decadal and longer time
scale variability.
Decadal and longer time
scale variability is
relatively weak over
land.

Externally forced
variance to total
variance ratio is low in
regions of high decadal
internal variability
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Predictive Skills in the Atlantic Ocean

MME temp MSSS: year 2-9 ann
Initialized - Uninitialized
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Goddard et al., 2012: A verification framework for
interannual-to-decadal predictions experiments. Climate

Dyn.

Both Figures taken from Meehl et al., 2014: Decadal
Climate Prediction, An Update from the Trenches.
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How can one distinguish the radiatively forced and the internally
generated Atlantic SST variability in models and observations?

S/N EOF Spatial Pattern (LENS/20th Century) Principle Component (LENS/20th Century, S/N EOF)
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Ting et al., 2009, 2011 NCAR LENS: 42 ensemble members with historical radiative forcing
from 1920 to 2005



Forced and Unforced North Atlantic SST Index (NASSTI)

Forced Components (Mode 1, LENS/20th Century)

* Forced NASSTI
variability can be
largely removed with
both modes 1&2 taken
out

*  AMV of individual
ensemble memberis
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Spatial Patterns of Forced Mode 1 &2 vs. AMV

Ts

AMV w/o ENSO

AMV (Without ENSO)
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Spatial Patterns of Forced Mode 1 &2 vs. AMV w/o ENSO

Ts Precip SLP
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What are the link between forced and internally generated Atlantic SST and

Atlantic hurricane activity?

SST Regressed to AMV and Climate Change
(a) AMO Reg Hlst Multi-model Mean
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Ting, M., S. Camargo, C. Li, Y. Kushnir, 2015: Natural and Forced North Atlantic Hurricane Potential Intensity Changes in CMIP5 Models. J.

Climate.



How sensitive are hurricane Potential Intensity (P1) change to SST:
AMYV vs. Climate Change

MDR Pl change per degree of SST anomalies for AMV and CC

(in m/s per degree of SST)

Historical RCP4.5 RCP8.5
AMV 25% 1.9414 1.1263 1.9469
| 50% 3.9295 4.1974 3.6513
75% 6.2901 8.4434 6.2211
CC 25% 0.3018 0.4825 0.4590
[ 50% 0.7440 1.2522 0.9773
75% 1.6086 1.9293 1.2986
(2) RMS of MDR SST (CMIP5) (b) RMS of MDR Pl (CMIP5)
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Hurricane Pl Regressed to
AMYV and Climate Change

(a) AMO Reg. Hist. Multi-model Mean
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Ting, M., S. Camargo, C. Li, Y. Kushnir, 2015:
Natural and Forced North Atlantic Hurricane
Potential Intensity Changes in CMIP5 Models. J.
Climate.



What about aerosols?

PI Regressmn GHGs PI Regressmn Aerosols
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MDR PI change per degree of SST anomalies for Aerosols and GHGs (in m/s per degree of SST)

Aerosol GHG
CC 25% 1.1852 0.5723
50% 2.1501 0.6468
75% 2.4852 0.9580

The patterns of Pl change due to aerosols are substantially different from the
corresponding AMV

Aerosol-forced SSTs are more effective in causing Pl changes than the corresponding
GHG-forced SSTs




Potential Intensity (m/s)
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What’s next?

AMV-related SSTAs, or coupled ocean-atmosphere
internally generated sea surface temperature
anomalies, tend to be much more effective in causing
hurricane intensity change than that due to radiative
forcing such as GHGs and aerosols.

What are the mechanisms and predictability of the

internally generated decadal and longer time scale
SSTAs?

What are the relationships between the North Atlantic
Oscillation (NAO) and AMV? Between NAO and
hurricane Potential Intensity (P1)?



AMV Mechanism: Link between AMV and NAO

* Is AMV simply a response to NAO white noise forcing
as shown in Clement et al. (2015)?

A CAM4-sstClim: SST(K), SLP(hPa), winds (ms™') B CAM4-slab (low-pass 5yr): SST(K), SLP(hPa), winds (ms™
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Fig. 4. The NAO in an uncoupled and a slab-ocean model. Regression of SST
(shaded), SLP (contours), and surface winds (vectors) on the standardized Subtropical _:I ‘ ‘ ‘

High (SH) index (the SLP averaged over 25° to 40°N to 45°W to 20°W) for (A) the CAM4- . :

sstClim simulation, in which the SSTs are fixed and set to climatology and (B) the CAM4- -1 -08 -06 -04 -02 0 02 04 06 08 1

slab simulation that includes thermal coupling. In (B), the SH index is filtered using a low-pass Lanczos filter to remove variability in the sub-5- year time scale.
Units are of °C, hPa, and m s per standard deviation of the SH index. SLP contours range from —4 hPa to 4 hPa, with intervals of 0.25 hPa.
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Internal Decadal vs. Forced Variability

Internal Variance Ratio for Ts: Decadal/Total
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The North Atlantic,
North Pacific, and the
Southern Oceans are
regions of high internal
decadal and longer time
scale variability.
Decadal and longer time
scale variability is
relatively weak over
land.

Externally forced
variance to total
variance ratio is low in
regions of high decadal
internal variability
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SLP Regression onto subpolar AMV SST: CMIP5
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SST Regression onto subpolar AMV SST: CMIP5
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Possible AMV-NAO Relationship in Observations and

CMIP5 Models
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| Link between winter NAO
Obs. DJF NAO (based on correlation for 1951-2016)
g e S S, and hurricane Pl on
Subseasonal-to-Seasonal
time scales

* Negative NAO leads to enhanced hurricane

potential intensity in the following hurricane
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Correlation of SST and Hurrell's NAO Index in DJF season (1951-2016) season
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* Recent works indicate robust winter NAO
predictability from sea ice, SST and stratospheric
circulation using statistical model (Wang et al.,

ey Dunstone et al., 2016).
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—0.50 -0.30 -0.10 0.10 0.30 0.50



Winter (DJF) NAO Forecast using a Multiple Linear Regression (MLR)
Model with Three Predictors (Oct SIC PC1, Oct Z70hPa PC2, and Sep

SST PC3)
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Summary

There is a distinct AMV SST pattern that can be separated from the
radiatively forced SST pattern due to natural and anthropogenic
radiative forcings

Hurricane potential intensity is more sensitive to the internally-
generated AMV SST than radiatively forced SST due to differences in
the surface energy balance.

Mechanisms of the internally generated AMV seems to be linked to the
coupled processes between the ocean and atmosphere in the Atlantic,
including atmospheric NAO forcing, meridional overturning ocean
circulation, and atmospheric response to AMV SST anomalies, leading
to decadal and longer time scales variability, which may provide a path
for dynamical model predictions of these decadal SST anomalies.

On shorter time scales (subseasonal to seasonal time scales, S25),
winter NAO forcing can be a useful predictor for hurricane Pl in the
North Atlantic.



